47 research outputs found

    Внутрішні аспекти французької безпеки в першу повоєнну добу 1918 – 1924

    Get PDF
    (uk) У статті розкриваються важливі аспекти безпеки Франції, такі, як зміцнення збройних сил, відновлення національного («священного») союзу, подолання економічних негараздів і соціальної напруженості, використання ресурсів колоній, навколо яких у першу повоєнну добу точилася запекла політична боротьба.(en) The important aspects of safety of France, such as strengthening of military powers, renewal of national («sacred») union, overcoming of economic confusions and social tension, use of resources of colonies open up in the article, round which the bitter political fight proceeded in the first post-war days

    The Six Rs of Head and Neck Cancer Radiotherapy

    Get PDF

    Evaluating Tumor Response of Non-Small Cell Lung Cancer Patients With F-18-Fludeoxyglucose Positron Emission Tomography: Potential for Treatment Individualization

    Get PDF
    Objective: To assess early tumor responsiveness and the corresponding effective radiosensitivity for individual patients with non-small cell lung cancer (NSCLC) based on 2 successive F-18-fludeoxyglucose positron emission tomography (FDG-PET) scans. Methods and Materials: Twenty-six NSCLC patients treated in Maastricht were included in the study. Fifteen patients underwent sequential chemoradiation therapy, and 11 patients received concomitant chemoradiation therapy. All patients were imaged with FDG before the start and during the second week of radiation therapy. The sequential images were analyzed in relation to the dose delivered until the second image. An operational quantity, effective radiosensitivity, alpha(eff), was determined at the voxel level. Correlations were sought between the average aeff or the fraction of negative aeff values and the overall survival at 2 years. Separate analyses were performed for the primary gross target volume (GTV), the lymph node GTV, and the clinical target volumes (CTVs). Results: Patients receiving sequential treatment could be divided into responders and nonresponders, using a threshold for the average alpha(eff) of 0.003 Gy(-1) in the primary GTV, with a sensitivity of 75% and a specificity of 100% (

    Radiobiological modeling of hyperthermia combined with Gamma-Knife radiosurgery in pediatric brain cancer

    Get PDF
    Assessment of the synergistic effect of radiotherapy (RT) and hyperthermia (HT) in clinical settings is crucial for further expansion of hyperthermia. The radiobiological modeling using an extended version of the LQ model with temperature-dependent radiosensitivity parameters has been suggested in combination with external beam radiotherapy in previous studies. This study investigates the radiobiological effect of intracranial hyperthermia combined with stereotactic radiosurgery (SRS) in pediatric brain cancers.\ua0The hyperthermia treatment plan was achieved with an elliptical applicator consisting of 16 ORWG antennas working at 400 MHz and a hybrid Specific Absorption Rate (SAR) optimization procedure based on Time-Reversal and PSO. The radiotherapy plan was created by the treatment planning software of Leksell Gamma Knife\uae Icon™

    Impact of SBRT fractionation in hypoxia dose painting - Accounting for heterogeneous and dynamic tumor oxygenation

    Get PDF
    Purpose Tumor hypoxia, often found in nonsmall cell lung cancer (NSCLC), implies an increased resistance to radiotherapy. Pretreatment assessment of tumor oxygenation is, therefore, warranted in these patients, as functional imaging of hypoxia could be used as a basis for dose painting. This study aimed at investigating the feasibility of using a method for calculating the dose required in hypoxic subvolumes segmented on F-18-HX4 positron emission tomography (PET) imaging of NSCLC. Methods Positron emission tomography imaging data based on the hypoxia tracer F-18-HX4 of 19 NSCLC patients were included in the study. Normalized tracer uptake was converted to oxygen partial pressure (pO(2)) and hypoxic target volumes (HTVs) were segmented using a threshold of 10 mmHg. Uniform doses required to overcome the hypoxic resistance in the target volumes were calculated based on a previously proposed method taking into account the effect of interfraction reoxygenation, for fractionation schedules ranging from extremely hypofractionated stereotactic body radiotherapy (SBRT) to conventionally fractionated radiotherapy. Results Gross target volumes ranged between 6.2 and 859.6 cm(3), and the hypoxic fraction <10 mmHg between 1.2% and 72.4%. The calculated doses for overcoming the resistance of cells in the HTVs were comparable to those currently prescribed in clinical practice as well as those previously tested in feasibility studies on dose escalation in NSCLC. Depending on the size of the HTV and the distribution of pO(2), HTV doses were calculated as 43.6-48.4 Gy for a three-fraction schedule, 51.7-57.6 Gy for five fractions, and 59.5-66.4 Gy for eight fractions. For patients in whom the HTV pO(2) distribution was more favorable, a lower dose was required despite a bigger volume. Tumor control probability was lower for single-fraction schedules, while higher levels of tumor control probability were found for schedules employing several fractions. Conclusions The method to account for heterogeneous and dynamic hypoxia in target volume segmentation and dose prescription based on F-18-HX4-PET imaging appears feasible in NSCLC patients. The distribution of oxygen partial pressure within HTV could impact the required prescribed dose more than the size of the volume

    Radiobiological evaluation of combined gamma knife radiosurgery and hyperthermia for pediatric neuro-oncology

    Get PDF
    Combining radiotherapy (RT) with hyperthermia (HT) has been proven effective in the treatment of a wide range of tumours, but the combination of externally delivered, focused heat and stereotactic radiosurgery has never been investigated. We explore the potential of such treatment enhancement via radiobiological modelling, specifically via the linear-quadratic (LQ) model adapted to thermoradiotherapy through modulating the radiosensitivity of temperature-dependent parame-ters. We extend this well-established model by incorporating oxygenation effects. To illustrate the methodology, we present a clinically relevant application in pediatric oncology, which is novel in two ways. First, it deals with medulloblastoma, the most common malignant brain tumour in children, a type of brain tumour not previously reported in the literature of thermoradiotherapy studies. Second, it makes use of the Gamma Knife for the radiotherapy part, thereby being the first of its kind in this context. Quantitative metrics like the biologically effective dose (BED) and the tumour control probability (TCP) are used to assess the efficacy of the combined plan

    Theoretical modelling of tumour oxygenation and influences on treatment outcome

    No full text
    One of the main problems in curing cancer resides in the different microenvironment existing in tumours compared to the normal tissues. The mechanisms of failure are different for radiotherapy and chemotherapy, but they all relate to the poor blood supply known to exist in tumours. It is therefore very important to know the tumour microenvironmental conditions in order to devise techniques that will overcome the problems and will therefore improve the result of the treatment. The aims of the thesis were the modelling of tumour oxygenation and the simulation of polarographic oxygen measurements in order to assess and possibly to improve the accuracy of the electrode in measuring tumour oxygenation. It also aimed to evaluate the implications of tumour microenvironment for the radiotherapy outcome. The project used theoretical modelling as the main tool. The processes of oxygen diffusion and consumption were described mathematically for different conditions, the result being very accurate distributions of oxygen in tissues. A first simple model of tissue oxygenation was based on the oxygen diffusion around a single blood vessel. A more complex model built from the basic physical processes and measurable parameters allowed the simulation of realistical tissues with heterogeneous vasculature. This model also allowed the modelling of the two types of hypoxia known to appear in tumours and their influence on the tumour microenvironment. The computer simulation of tissues was also used for assessing the accuracy of the polarographic technique for measuring tumour oxygenation. The results of this study have shown that it is possible to model theoretically the tissue oxygenation starting from the basic physical processes. The particular application of our theoretical simulation to the polarographic oxygen electrode has shown that this experimental method does not give the oxygen values in individual cells. Because the electrode measures the average oxygenation in a relatively large tissue volume, the resulting oxygen distributions are different from the real ones and the extreme high and low values are not detected. It has further been found that the polarographic electrode cannot make distinction between various types of hypoxia existing in tumours, the geometrical distribution of the hypoxic cells influencing mostly the accuracy of the measurement. It was also shown that because of the averaging implied by the measurement process, electrode results should not be used directly to predict the response to radiation. Thus, the differences between the predictions in clinical tumour control obtained from the real or the measured oxygenations are of the order of tens of percents in absolute value. A method to improve the accuracy of the electrode, i.e. to improve the correlation between the results of the measurements and the actual tissue oxygenation, was proposed. In conclusion, theoretical modelling has been shown to be a very powerful tool for predicting the outcome of radiotherapy and it has the advantage of describing the tumour oxygenation in the least invasive manner. Furthermore it allows the investigation of the invasiveness and the accuracy of various experimental methods

    Towards multidimensional radiotherapy: key challenges for treatment individualisation

    No full text
    Functional and molecular imaging of tumours have offered the possibility of redefining the target in cancer therapy and individualising the treatment with a multidimensional approach that aims to target the adverse processes known to impact negatively upon treatment result. Following the first theoretical attempts to include imaging information into treatment planning, it became clear that the biological features of interest for targeting exhibit considerable heterogeneity with respect to magnitude, spatial, and temporal distribution, both within one patient and between patients, which require more advanced solutions for the way the treatment is planned and adapted. Combining multiparameter information from imaging with predictive information from biopsies and molecular analyses as well as in treatment monitoring of tumour responsiveness appears to be the key approach to maximise the individualisation of treatment. This review paper aims to discuss some of the key challenges for incorporating into treatment planning and optimisation the radiobiological features of the tumour derived from pretreatment PET imaging of tumour metabolism, proliferation, and hypoxia and combining them with intreatment monitoring of responsiveness and other predictive factors with the ultimate aim of individualising the treatment towards the maximisation of response

    Towards Multidimensional Radiotherapy: Key Challenges for Treatment Individualisation

    No full text
    Functional and molecular imaging of tumours have offered the possibility of redefining the target in cancer therapy and individualising the treatment with a multidimensional approach that aims to target the adverse processes known to impact negatively upon treatment result. Following the first theoretical attempts to include imaging information into treatment planning, it became clear that the biological features of interest for targeting exhibit considerable heterogeneity with respect to magnitude, spatial, and temporal distribution, both within one patient and between patients, which require more advanced solutions for the way the treatment is planned and adapted. Combining multiparameter information from imaging with predictive information from biopsies and molecular analyses as well as in treatment monitoring of tumour responsiveness appears to be the key approach to maximise the individualisation of treatment. This review paper aims to discuss some of the key challenges for incorporating into treatment planning and optimisation the radiobiological features of the tumour derived from pretreatment PET imaging of tumour metabolism, proliferation, and hypoxia and combining them with intreatment monitoring of responsiveness and other predictive factors with the ultimate aim of individualising the treatment towards the maximisation of response
    corecore